Step 3: Add Woven Area

Tie a piece of yarn to one stick and then wrap it around the stick parallel. Continue wrapping back and forth. The more times the yarn is wrapped, the more options there are for weaving in items.
Step 4: Other Colors

Wove a bit more color. Wove this color perpendicular to the last color. Can be creative and weave in different directions.
Step 5: Add Items
Weave items into the yarn. (If want to know how to make the origami flowers see other Instructable)
Cardboard Automota
Cardboard automata is a type of mechanical sculpture made of simple materials that lets you bring stories to life. As you build you can explore simple machine elements such as cams, levers, and linkages in a playful way. Making this version of automata lets you quickly get started in building functional mechanisms as your mechanical sculpture ideas develop.

TRY IT!

Gather these materials for building your automata

Small cardboard box (approximately 6" x 6")
Thick foamie sheet - 6mm thick craft foamies for the cams and cam followers
Skewer sticks
Paper drinking straw
Masking tape
Scissors
Hot glue gun and glue stick
Washers and nuts (for weight)
Sharpened pencil
Nail or wood screw (for poking holes in the cardboard)

the tinkering studio

© 2017 Exploratorium. www.exploratorium.edu

The Exploratorium grants reprint permission of this material for noncommercial, educational use only. Copyright notice must be included on all reprints. Requests for electronic or other uses should be directed to permissions@exploratorium.edu
General materials:

Additionally, you will need materials to create the narrative on top of your construction. You can use thinner foam sheets to create this, and materials such as feathers, corks, googly eyes, colored felt, and pompons are other fun things that help tell a story or decorate it.

GETTING STARTED

Make a frame:

Remove the top and bottom flaps of the cardboard box to make an open square. Save these pieces of cardboard as they will be useful for other parts!

We usually cut a square box in half, creating two frames approximately 3" wide.

To stabilize your box cut four cardboard triangles and hot glue them in opposite corners of the box. Tape can substitute for hot glue but it won't be as permanent.
The spinning element that you turn with the handle is called a cam. The element that sits on top of the cam will move according to the shape and position of the cam, and is called a cam follower. The cam follower transmits its motion to the elements on top of the box to animate your sculpture.

The way you align the cams and cam followers will affect the motion of your animated elements. Some simple to achieve movements are:

- Round and Round
- Up and Down + Round and Round
- Back and Forth
You can also try some more complex but satisfying motions:

- Up and Down
- Side to side

Make the mechanism

Draw your cam and cam follower on the thick foamie sheet and cut them out. (you can use a yogurt cup or a circular container to trace a circle.)

You might start with a cam that is about 2.5" in diameter, then experiment with other sizes based on your design.

Tip: Cut the cams smoothly and make sure the cam follower is a little bigger than the cam. As you make more automata, experiment with different shapes and sizes to see how they affect the automata motion.
Put your cam on a skewer stick inside the frame.

Tip: Start the holes in the frame using a nail or screw, and make sure the cam clears the top and bottom of the frame. Don’t glue the cam yet!

Cut small foam or cardboard squares and push them on each end of the skewer stick to hold your axle in place.

Tip: Don’t glue these in place yet!

Poke a hole in the top of the frame where you want your cam follower to be located, and insert a piece of drinking straw. The straw should extend both above and below the frame, so it will stabilize the upright skewer stick. Carefully glue the drinking straw in place.

Tip: The tip of a pencil is a good tool to gradually enlarge the hole so that the drinking straw just fits without falling through.
Test your mechanism

Adjust your cam under the cam follower until you get the motion you like, then GLUE the cam into place on the skewer stick axle.

Make the handle

Glue a small rectangle cut from the cardboard box flap to the skewer stick axle.

Glue a second piece of skewer stick to the end of the rectangle to make a handle.

Make your story

Once it's working, take another close look and imagine what might move on top of your box. Think of things that spin, bounce, or jump.

When you decide what it should be, make the sculpture out of the rest of your materials.

As you continue to experiment with different cardboard automatons you can decide to start either by coming up with a new idea for a story on top and then figure out what mechanism can make that motion or continue to make the mechanism first and then decide what your sculpture will be.
TAKE IT FURTHER

Wood is a great alternative to cardboard for building automata. For these automata, we use a wooden frame for the cardboard box, dowels for the sticks, and screws and nails instead of hot glue. Cutting circles and shapes in wood might be challenging, but you will build your woodworking skills while you make automata (or use pre-cut wooden shapes from craft stores).

Wire automata is another way to explore simple machine elements. Spend some time bending wire to make sculptures before diving into automata. Use copper wire so that you can solder wire joints if needed. You can learn how to make cranks, linkages, and handles out of wire then you can add decorative materials or wood pieces to your wire mechanism.

You can also scrounge for parts from recycling bins to make automata with. You might use old plastic bottles and aluminum cans, or walk around your house to find materials that you want to use for your automata. Making automata from found objects is a bit challenging but you will find that the techniques from cardboard, wire, wood automata come in handy and can be applied in many ways.

EDUCATOR ADDENDUM

A note on our philosophy:

The Tinkering Studio is based on a constructivist theory of learning, which asserts that knowledge is not simply transmitted from teacher to learner, but actively constructed by the mind of the learner. Constructionism suggests that learners are more likely to make new ideas while actively engaged in making an external artifact. The Tinkering Studio supports the construction of knowledge within the context of building personally meaningful artifacts. We design opportunities for people to “think with their hands” in order to construct meaning and understanding.

Decisions and designs that support a tinkering experience

Tinkering Studio activities and investigations are designed to encourage learners to complexify their thinking over time. The variety of materials and variables available for experimentation allow for learners to enter at a point where they are comfortable starting, and then alter and refine their designs as they develop new ideas. Tinkering activities are often fun, whimsical, inspired, and surprising, here are a few of the the goals that we have for Cardboard Automata activity:

STEM (science, technology, engineering, and mathematics) education is a means, not an end in itself Building cardboard automata is a playful and inventive approach to learning about simple machines. Learners naturally explore levers, cams, cam followers, linkages, and other mechanisms, as a means to make their mechanisms work.
Science and art connections
This activity is a good example of integrating science and art into an activity. For learners, the narrative and decorative aspects of the automata are as important as the mechanical elements. Making automata takes a lot of time, but going back and forth between the narrative and the mechanism throughout the activity will make the automata very unique and personally meaningful for learners.

Activities and investigations encourage learners to complexify their thinking over time
The motion of automata depends on various factors such as the size and shape of the cams, the position of the axles, and number of cams and cam followers. Exploring these factors is a good starting point to understanding simple mechanisms. Introducing other elements such as gears, linkages, and springs will add complexity to the activity and enable learners to explore endless possibilities for creating mechanical motions in automata.

Environment (the elements of the space that support tinkering)
In the Tinkering Studio there are many things that we keep in mind when setting up an environment for a successful tinkering activity.

Create an Inviting Space
Since learners often work with us for an extended period of time, so we try to create a warm and welcoming workspace with comfortable seating, sturdy worktables, and good lighting. We often display exhibits, or examples from past projects and current activities throughout the space to seed ideas and provide an introduction to what is happening that day. Materials are easily accessible and in close proximity to the tinkerers, and we often work at large, communal activity stations to enable cross-talk and invite collaboration between participants, allowing them to look at each other for answers and solutions.

Automata examples in the space
In making Cardboard Automata, providing clear and easy to follow examples of different types of motion is crucial. We usually prepare five different examples that move in interesting ways:

- Round and round
- Up and down, and around
- Up and down, back and forth
- Straight up and down
- Side to side

It might be helpful for you to make each example with the same basic shape on top (like a circle or triangle), that way participants can focus on the differences in the motion. It also helps to name each motion for the purpose of better explanation like “Round and round” “Up and down” or “Side to side” on the frame of automata.

In addition, it’s helpful to have a selection of examples of completed automata that span the range of complexity and “achievability” with the same set of materials on the table. Be sure to set aside plenty of time for playing around and building cardboard automata before the activity so that you can display more inspiring examples that you create.
RELATED TINKERING ACTIVITIES

Activity Connections
Try these related activities to develop your own repertoire of tinkering experiences.

Toy Take-Apart: Collect discarded mechanical stuffed toys and dissect them to find battery packs, switches, sensors, and motor-driven mechanical elements. You can test the things that you find inside, repair broken toys, or repurpose them using your imagination and a few tools to create new and original playthings.
https://tinkering.exploratorium.edu/toy-take-apart

Marble Machines: Create your own ball-run contraption made from familiar materials. Try experimenting with motion and build the contraption to send a rolling marble through tubes and funnels, across tracks and bumpers into a catch at the end.
https://tinkering.exploratorium.edu/marble-machines

Chain Reaction: Build a contraption in a domino-style chain reaction that will trigger the next contraption! Make your machine comical and whimsical using variety of materials such as bowling ball, pulleys, slow motors, mechanical toys, cowboy hats, balloons, ropes, mousetraps, gears, and more.
https://tinkering.exploratorium.edu/chain-reaction

ARTIST CONNECTIONS
inspiring connections to the Cardboard Automata activity

Cardboard Automata is inspired by the Cabaret Mechanical Theater, a group of automata builders based in England. Artists like Paul Spooner, Keith Newstead, and Carlos Zapata build beautiful narrative pieces using elegant mechanisms based on cams, gears, springs, and linkages.
http://www.cabaret.co.uk/

Arthur Ganson is a self-taught engineer, and the creator of intricate, whimsical machines. He makes mechanical art demonstrations and Rube Goldberg machines with existential themes. Ganson’s work appeals to viewers of all ages, and has been featured in an animated children’s television show. He has invented mass-produced children’s toys, and hosts an annual competition to make Rube Goldberg chain reaction machines.
http://arthurganson.com/
Animal Art
Animal Art

Students creatively create an animal using craft supplies

Supplies:
Toilet paper rolls
Popsicle sticks
Construction paper
Markers
Googly eyes
Craft materials: feathers, sequins, buttons, etc
Hand Sewing
Hand Sewing Projects

Supplies:

- 6" wooden embroidery hoops
- Bucket of buttons
- Embroidery or regular thread
- Tapestry needles. 1 yard of muslin, cut into squares (to fit into embroidery hoop). Can be found at any sewing store or even Walmart.
- felt
- fabric

Hand Sewing Button Trees

- thread needles and learn to tie a knot
- Introduce button sewing. Going up through one hole and then back down through the other. Teach different ways to sew buttons with four holes.

- Hand out embroidery hoops with muslin and a machine stitched felt “trunk” attached.
- Show Button Tree made as an example. Let kids start on their own Button Trees, emphasizing that they can create whatever kind of tree they want. No right or wrong.
Day Two: Cross Stitching Hearts

- Work on creating a simple picture made of “Xs” on graph paper as the girls come in.

- Share pictures they have created and explain that they have made their own cross stitch patterns!
- Demonstrate sewing an X in the gingham.
- Hand out embroidery hoops with fabric
- Remind to start from underneath the embroidery hoops so their knot doesn’t show. Mark all of the fabric to show them where to start with their cross stitch.
- Start cross stitching!

- I had heavy cardboard cut to 4×6 size and spray adhesive so they could frame these when they finished,
Flowers
from Mars
Intro: Flowers from Mars - 1st Grade Tinkering - Week 1

"Flowers from Mars" was the first lesson in a 10-week Tinkering series offered to first grade students. Using everyday materials in open-ended projects, we transform the ordinary to the extraordinary while nurturing problem-solving skills, building creative confidence, encouraging collaboration, and empowering students as agents of their own success.

What is tinkering? Tinkering is experimenting with ideas, tools, and materials to discover the myriad of possibilities that everyday objects can hold. Tinkering allows us to invent marvelous creations through working with our hands, persevering through setbacks, and engaging with others in creative collaboration. Tinkering is "thinking with our hands."

Why tinkering? Thanks to smart phones, video games, and good old TV, too much of our kids' world is virtual and their experiences are largely vicarious. Tinkering allows for empowered, active learning. It is real interaction with real objects, real tools, and real people.

DESCRIPTION:
Students will transform ordinary paper towel and toilet paper rolls into unique expressions. (Note: Making the "flowers" is just a suggestion - students are invited to tinker with the materials and tools to create whatever they wish).

OBJECTIVES & GOALS:
- Explore ways to manipulate & change the shape and function of cylindrical cardboard to fantastical creations
- Build an understanding of the concept of TINKERING
- Foster collaboration between small groups of students
- Encourage speaking and listening skills in group discussion

Step 1: Gather Materials / Introduction (5 minutes)

Materials:
- Paper towel and toilet paper rolls (at least 6 per student)
- Scissors (one per student)
- Tape dispensers / tape (one per 2 students)

Introduction & Demo (students on the rug) - 10 minutes

Tell the students: "For the next 10 weeks, we are going to have lots of fun doing what's called TINKERING." "Has anyone ever heard the word TINKERING before?" "What do you think it means?" Gather responses then offer this definition:

"Tinkering is a way we can experiment and explore. We can take materials and tools, and our imaginations to discover new things about an object. Tinkering allows us to make marvelous creations by working with our hands and working with our classmates. Tinkering is a way of "thinking with our hands."

"Let's make this our phrase. When I say "When we tinker" you say, "we think with our hands." " (gesture with wigging fingers at the top of the head). Do the phrase/statement together a 2nd and 3rd time together.

Introduce TOOLS and MATERIALS:

TOOLS - are things we use to help us make, build and create. Tools can be hammers and saws, but tools can also be scissors, tape, pencils. It's what we use to TRANSFORM, or change something. Today, the tools we will be using are SCISSORS and TAPE.

MATERIALS - are the things that are being TRANSFORMED or made into something. Today, the MATERIAL we are using are toilet paper rolls.